
1

Local Monotonicity

Reconstruction

Michael Saks

Rutgers University

C. Seshadhri

IBM Almaden

2

Overview

 Introduce a class of algorithmic problems:

Local Property Reconstruction

Distributed Property Reconstruction

Parallel Property Reconstruction

extending framework of

program self-correction,

robust property testing

locally decodable codes)

 An interesting example: Monotonicity

4

Data Sets

Data set = function f : Γ V

Γ = finite index set

V = value set

For us,

Γ = [n]d = {1,…,n}d

V = nonnegative integers

f = d-dimensional array of nonnegative integers

5

Properties of data sets

Focus of this talk:

 Monotone: nondecreasing along every line

(Order preserving)

When d=1,

monotone = sorted

6

dist(f,g) = fraction of domain where f(x) ≠ g(x)

ε(f) = d(f,P)

= minimum of dist(f,g) for g satisfying P

Distance between two data sets

7

Property Reconstruction

Setting:

Given f

 We expect f to satisfy P

(e.g. we run algorithms on f that rely on P)

 but f might not satisfy P

but f is close to P -- ε(f) is small

Reconstruction problem for P

Given function f,

produce reconstructed function g that:

 satisfies P

 is close to f:

Error blow-up

d(f,g) / ε(f)

is not too large

8

9

What does it mean to produce g?

 Offline property reconstruction

Input: function table for f

Output: function table for g

 Local property reconstruction

(which builds on

Online property reconstruction

(Ailon-Chazelle-Liu-Seshadhri))

10

Local property reconstruction 1

What we want: A local filter

Algorithm A with query access to function f

Input: domain element x

Output: g(x) (reconstructed function value)

 A may query f(y) for any y

 uses short random string s

-- otherwise deterministic.

Key points:

 String s is the same for all queries.

 The reconstructed function g is fully determined by f and s

11

Local Property Reconstruction II

Goals:

 g has property P (no error)

 d(g,f) = O(ε(f))

WHP over choices of random string s

 For each input x, A(x) runs quickly

in particular only reads f(y) for a small number of y.

Local Property Reconstruction III

Motivation:

 Allows for online reconstruction with small

auxiliary memory

 Allows for many autonomous clients to

perform the same reconstruction

12

13

Local Property Reconstruction III

Inspirations and Connections:
 Online Property Reconstruction (Ailon-Chazelle-Liu-Seshadhri)

 Locally Decodable Codes and Program self-correction (Blum-Luby-

Rubinfeld; Rubinfeld-Sudan; etc)

 Graph Coloring (Goldreich-Goldwasser-Ron)

 Monotonicity Testing (Dodis-Goldreich- Lehman-Raskhodnikova-Ron-

Samorodnitsky; Goldreich-Goldwasser- Lehman-Ron-Samorodnitsky;Fischer;Fischer-

Lehman-Newman-Raskhodnikova-Rubinfeld-Samorodnitsky;Ergun-Kannan-Kumar-

Rubinfeld-Vishwanathan; etc)

 Tolerant Property Testing (Parnas, Ron, Rubinfeld)

14

Example: Local Decoding of Codes

f = boolean string of length n

Property = is a Code word of a

given error correcting code C

Reconstruction = Decoding to a close code word

Local filter= Local decoder

15

Key issue for general properties
Answers must be mutually consistent

Say that h is satisfactory if it satisfies P and is close to f.

 We want a satisfactory h

 There may be many satisfactory h

 If we look at a single query point x, the algorithm may answer h(x)

for any satisfactory h

(possibly many permissible answers)

 Global consistency requirement:

For each random seed, the ensemble of query responses

corresponds to a single satisfactory h.

16

Our results I

A local filter for monotonicity in dimension d such that:

 Time to compute g(x) is (log n)O(d) as

 dist(f,g) = C1(d)d(f,P) (C1(d) = 2(O(d2)))

 Shared random string s has size (d log n)O(1)

(Builds on prior results on monotonicity testing and online

reconstruction mentioned earlier)

Lower Bound. For some B>0,

For any local filter for monotonicity on domain {0,1}d

if query time is at most 2Bd

then error blow up is at least 2Bd

Other Examples and an Invitation

Other examples of local property reconstruction:

Not many….

 Locally Decodable Codes

 Graph k-colorability (Implicit in Goldreich-Goldwasser-Ron)

 Being an expander (Kale, Peres, Seshadhri)

INVITATION

17

Remainder of Talk:

Overview of our filter construction for

monotonicity

18

19

Preliminaries

A subset S of Γ is f-monotone

if f restricted to S is monotone.

For each x in Γ, A(x) must:

 Decide whether g(x) = f(x)

 If not , then determine g(x)

Accepted = { x : g(x) = f(x) }

Rejected = { x : g(x) ≠ f(x) }

In particular, Accepted must be f-monotone

20

Subproblem: Element Classification

 Classify each x in Γ as Accepted or Rejected

 Accepted is f – monotone

 Rejected is small: size size O(ε(f)|Γ|)

Need subroutine Classify(x).

Initial approach

 Construct a subroutine Classify as above

 Define g(x):

Accepted(x) = { y : y ≤x and y Accepted}

g(x) = max{f(y) : y in Accepted(x))}

 Then:

 g is monotone

 g agrees with f on Accepted

21

Initial approach II

Failure of initial approach

Accepted(x) = { y : y ≤x and y Accepted}

g(x) = max{f(y) : y in Accepted(x))}

Computing g(x) is expensive:

it (apparently) requires

identifying all maximal y in Accepted(x)

22

Refined approach

Given function Classify

Define

Accepted*(x) = a small carefully chosen

sample of Accepted(x)

g(x) = max{f(y) : y in Accepted*(x))}

23

Refined Approach II

g(x) = max{f(y) : y in Accepted*(x))}

Resulting g need not be monotone

To ensure monotonicity

we need samples associated to each point to be compatible:

For all x < y, Accepted*(x) << Accepted*(y)

(Each z in Accepted*(x) is less than some z’ in Accepted*(y))

24

Refined Approach III

Summary:

Two routines:

Classify(x) which Accepts or Rejects

Accepted*(x) gives sample of Accepted elements ≤ x

so that Accepted*(x) << Accepted*(y)

Return g(x) = max{f(y) : y in Accepted*(x))}

25

Refined Approach IV.

On input x,

Return g(x) = max{f(y) : y in Accepted*(x))}

Challenges:

(1) For most x, want x in Accepted*(x)

so as to guarantee g(x)=f(x)

(2) Need that sets Accepted*(x) are pairwise compatible

Conflict between (1) and (2)

26

Constructing Classify

 Classify each x in Γ as Accepted or Rejected

 Accepted is f – monotone

 Rejected is small:

size O(d(f,P) |Γ|)

27

28

A sufficient condition for f-monotonicity

A pair (x,y) in Γ × Γ is a violation if

x < y and f(x) > f(y)

To guarantee that Accepted is f - monotone:

Rejected should hit all violations:

For each violation (x,y), x or y is Rejected

29

Classify: 1-dimensional case

d=1: Γ={1,…,n}

f is a linear array.

For x in Γ, and subinterval J of Γ:

violations(x,J)=|{y in J : (x,y) is a violation}|

Interval J is near x if dist(J,x)<|J|

30

Constructing a large f-monotone set I

The set Bad:

x in Bad if for some interval J near to x

x is in violation with at least half of J

Lemma.

1)Good=Γ - Bad is f-monotone

2)|Bad| ≤ 4 d(f,P) |Γ| .

Proof:

1) If (x,y) is a violation then one of them is Bad for the interval [x,y].

2) Omitted, but easy

31

Constructing a large f-monotone set II

Lemma.

 Good=Γ \ Bad is f-monotone

 |Bad| ≤ 4 d(f,P) |Γ| .

So we’d like to take:

Accepted=Good Rejected = Bad

32

How do we classify x as Good or Bad?

 To determine is y is Good or Bad:

For each interval J that is near to y,

is y is in violation with half of J?

Too slow…..

 There are (n) intervals J near to y

 Counting violations of x with J takes time

(|J|) .

33

Speeding up the computation

 Estimate number of violations of y with J by

random sampling from J

sample size polylog(n) is sufficient

violations* (y,J) denotes the estimate

 Compute violations* (y,J) only for a

carefully chosen set of test intervals

34

Set of Test intervals

Want set T of test intervals of [n] satisfying:

 Each x is near to O(log n) test intervals

 For any x<y, there is a test interval contained in [x,y] that is near to
both x and y.

which ensures that WHP, for every violation x,y, at least one
of them is rejected.

35

The Test Set T

Assume n=|Γ|=2k

k layers of intervals

Layer j consists of 2k-j+1-1 intervals of size 2j

36

Subroutine classify

To classify y

If for each J in T near to y

violations*(y,J) < .4 |J|

then y is Accepted

else y is Rejected

37

Where are we?

For d=1 have a subroutine Classify

 On input x,

 Classify outputs Accepted or Rejected

 Runs in time polylog(n)

 WHP

 Accepted is f-monotone

 |Rejected| ≤ 10 d(f,P) |Γ|

Lift to higher d by recursion on dimension

Where are we? II

Now we need a fast function:

Accepted*(x):

returns a carefully chosen sample of Accepted

elements ≤ x

Must satisfy:

for all x < y,

Accepted*(x) << Accepted*(y)

38

Constructing Accepted*(x), d=1

 Use the same test intervals.

 For each test interval J construct a polylog(n) size

sample Sample*(J)

 First attempt: Take Accepted*(x) to be:

union of Sample*(J) for J

near to and ≤ x

But this may violate

Accepted*(x) << Accepted*(y)

39

Constructing Accepted*(x), d=1 II

40

 First attempt: Take Accepted*(x) to be:

union of Sample*(J) for J

near to and ≤ x

Bad Scenario: x < y

x y

J

K x in Sample*(J)

but not Sample*(K)

Avoiding the bad scenario, d=1

Focus on the test intervals

 For a given test interval J, there are only

O(log n) test intervals J’

that can cause the bad scenario.

 For each such J’,

if the bad scenario happens

then set Sample*(J) to be empty.

 Key point in analysis: can still ensure that g(x)=f(x) for “most” x.

41

Constructing Accepted*(x), d>1

Instead of O(n) test intervals,

have O(nd) test boxes

Construct Sample*(B) for each box B.

Identify similar bad scenario, but….

….. Setting Sample*(B) to be empty is too drastic.

Instead Sample*(B) is thinned out carefully

This is the hardest part of the paper:

technical (but not messy) algorithm and analysis

42

43

Further work
 Technical (but still interesting) gap:

The g produced by our algorithm has

d(g,f) ≤ C(d)ε(f)|Γ|

 Upper bound on C(d) is exp(d2) .

 Lower bound on C(d) exp(d)

 Main question:

Are there other interesting properties with non-trivial local filters?

 (Reconstructing expanders, Kale,Peres, Seshadhri, FOCS 08)

