Local Monotonicity Reconstruction

Michael Saks Rutgers University

> C. Seshadhri IBM Almaden

Introduce a class of algorithmic problems:

Local Property Reconstruction

Distributed Property Reconstruction Parallel Property Reconstruction extending framework of program self-correction, robust property testing locally decodable codes)

An interesting example: Monotonicity

Data Sets

```
Data set = function f : \Gamma \rightarrow V
```
 Γ = finite index set $V =$ value set

For us,

 $\Gamma = [n]^d = \{1, ..., n\}^d$

 $V =$ nonnegative integers

 $f = d$ -dimensional array of nonnegative integers

Focus of this talk: □ Monotone: nondecreasing along every line (Order preserving) When $d=1$,

monotone = sorted

Distance between two data sets

$dist(f,g) =$ fraction of domain where $f(x) \neq g(x)$

$\varepsilon(f) = d(f, P)$

 $=$ minimum of dist(f,g) for g satisfying P

Property Reconstruction

Setting: Given f

- We expect f to satisfy P (e.g. we run algorithms on f that rely on P)
- **but f might not satisfy P**

but f is close to $P - \varepsilon(f)$ is small

Reconstruction problem for P

Given function f,

produce reconstructed function g that:

satisfies P

 is close to f: Error blow-up d(f,g) / ε(f) is not too large

What does it mean to produce g?

 Offline property reconstruction Input: function table for f Output: function table for g

 Local property reconstruction (which builds on Online property reconstruction (Ailon-Chazelle-Liu-Seshadhri)) Local property reconstruction

What we want: A local filter Algorithm A with query access to function f

Input: domain element x

Output: g(x) (reconstructed function value)

- A may query $f(y)$ for any y
- uses short random string s
	- -- otherwise deterministic.

Key points:

- String s is the same for all queries.
- The reconstructed function g is fully determined by f and s

Local Property Reconstruction II

Goals:

g has property P (no error)

- \blacksquare d(g,f) = O(ε (f)) WHP over choices of random string s
- For each input x, $A(x)$ runs quickly in particular only reads $f(y)$ for a small number of y.

Local Property Reconstruction III

Motivation:

- Allows for online reconstruction with small auxiliary memory
- **Allows for many autonomous clients to** perform the same reconstruction

Local Property Reconstruction III

Inspirations and Connections:

- Online Property Reconstruction (Ailon-Chazelle-Liu-Seshadhri)
- Locally Decodable Codes and Program self-correction (Blum-Luby-Rubinfeld; Rubinfeld-Sudan; etc)
- Graph Coloring (Goldreich-Goldwasser-Ron)
- Monotonicity Testing (Dodis-Goldreich- Lehman-Raskhodnikova-Ron-Samorodnitsky; Goldreich-Goldwasser- Lehman-Ron-Samorodnitsky;Fischer;Fischer-Lehman-Newman-Raskhodnikova-Rubinfeld-Samorodnitsky;Ergun-Kannan-Kumar-Rubinfeld-Vishwanathan; etc)
- Tolerant Property Testing (Parnas, Ron, Rubinfeld)

Example: Local Decoding of Codes

 $f =$ boolean string of length n

Property = is a Code word of a given error correcting code C

Reconstruction = Decoding to a close code word

Local filter= Local decoder

Key issue for general properties

Answers must be mutually consistent

Say that h is satisfactory if it satisfies P and is close to f.

- We want a satisfactory h
- There may be many satisfactory h
- If we look at a single query point x, the algorithm may answer $h(x)$ for any satisfactory h

(possibly many permissible answers)

Global consistency requirement:

For each random seed, the ensemble of query responses corresponds to a single satisfactory h.

Our results I

A local filter for monotonicity in dimension d such that:

- Time to compute $g(x)$ is (log n)^{O(d)} as
- **dist(f,g)** = C₁(d)d(f,P) $(C_1(d) = 2^{(O(d^2))})$
- Shared random string s has size (d log n) $O(1)$

(Builds on prior results on monotonicity testing and online reconstruction mentioned earlier)

Lower Bound. For some B>0,

For any local filter for monotonicity on domain $\{0,1\}^d$ if query time is at most 2^{Bd} then error blow up is at least $2^{\textsf{Bd}}$

Other Examples and an Invitation

Other examples of local property reconstruction:

Not many….

- Locally Decodable Codes
- Graph k-colorability (Implicit in Goldreich-Goldwasser-Ron)
- Being an expander (Kale, Peres, Seshadhri)

Remainder of Talk:

Overview of our filter construction for monotonicity

Preliminaries

A subset S of Γ is f-monotone if f restricted to S is monotone.

For each x in Γ , A(x) must:

- Decide whether $g(x) = f(x)$
- If not, then determine $g(x)$ $Accepted = \{ x : g(x) = f(x) \}$ $Rejected = { x : g(x) \neq f(x) }$ In particular, Accepted must be f-monotone

Subproblem: Element Classification

■ Classify each x in Γ as Accepted or Rejected

 \Box Accepted is f – monotone

 \Box Rejected is small: size size $O(\varepsilon(f)|\Gamma|)$

Need subroutine Classify(x).

Initial approach

- Construct a subroutine Classify as above
- **Define** $g(x)$ **:**

 $Accepted(x) = { y : y \le x and y Accepted}$

 $g(x) = max{f(y) : y in Accepted(x))}$

- Then:
	- **g** is monotone
	- **g** agrees with f on Accepted

```
Initial approach II
```
Failure of initial approach

 $Accepted(x) = { y : y \le x and y Accepted}$

 $g(x) = max{f(y) : y in Accepted(x))}$

Computing g(x) is expensive: it (apparently) requires identifying all maximal y in Accepted(x)

Refined approach

Given function Classify

Define

 $Accepted[*](x) = a small carefully chosen$ sample of Accepted(x)

 $g(x) = max{f(y) : y in Accepted*(x))}$

Refined Approach II

 $g(x) = max{f(y) : y in Accepted*(x))}$

Resulting g need not be monotone

To ensure monotonicity we need samples associated to each point to be compatible:

For all $x < y$, Accepted^{*}(x) << Accepted^{*}(y)

(Each z in Accepted^{*}(x) is less than some z' in Accepted^{*}(y))

Refined Approach III

Summary:

Two routines:

Classify(x) which Accepts or Rejects

Accepted^{*}(x) gives sample of Accepted elements $\leq x$ so that $Accepted[*](x) << Accepted[*](y)$

Return $g(x) = max{f(y) : y in Accepted^*(x))}$

Refined Approach IV.

On input x,

Return $g(x) = max{f(y) : y in Accepted^*(x))}$

Challenges: (1) For most x, want x in $Accepted^*(x)$ so as to guarantee $g(x)=f(x)$

(2) Need that sets Accepted*(x) are pairwise compatible

Conflict between (1) and (2)

Constructing Classify

■ Classify each x in Γ as Accepted or Rejected

 \Box Accepted is f – monotone

□ Rejected is small:

size O(d(f,P) |Γ|)

A sufficient condition for f-monotonicity

A pair (x, y) in $\Gamma \times \Gamma$ is a violation if $x < y$ and $f(x) > f(y)$

To guarantee that Accepted is f - monotone:

Rejected should hit all violations:

For each violation (x,y) , x or y is Rejected

Classify: 1-dimensional case

d=1: $\Gamma = \{1, \ldots, n\}$ f is a linear array.

For x in Γ, and subinterval J of Γ: violations $(x,J)=|\{y \in J : (x,y) \text{ is a violation}\}|$

Interval J is near x if dist(J, x)< $|J|$

Constructing a large f-monotone set I

The set Bad:

x in Bad if for some interval J near to x x is in violation with at least half of J

Lemma. 1)Good=Γ - Bad is f-monotone $2|Bad| \leq 4 d(f,P) |\Gamma|$.

Proof:

1) If (x,y) is a violation then one of them is Bad for the interval [x,y].

2) Omitted, but easy

Constructing a large f-monotone set II

Lemma.

- Good=Γ \ Bad is f-monotone
- \blacksquare \blacksquare

So we'd like to take:

Accepted=Good Rejected = Bad

How do we classify x as Good or Bad?

■ To determine is y is Good or Bad:

For each interval J that is near to y, is y is in violation with half of J?

Too slow…..

- There are $\Omega(n)$ intervals J near to y
- Counting violations of x with J takes time $\Omega(|J|)$

Speeding up the computation

Estimate number of violations of y with J by random sampling from J sample size polylog(n) is sufficient

violations* (y,J) denotes the estimate

 Compute violations* (y,J) only for a carefully chosen set of test intervals

Set of Test intervals

Want set T of test intervals of [n] satisfying:

- **Each x** is near to $O(log n)$ test intervals
- For any $x < y$, there is a test interval contained in [x,y] that is near to both x and y.

which ensures that WHP, for every violation x,y, at least one of them is rejected.

Assume n=|Γ|=2^k

k layers of intervals

Layer j consists of $2^{k-j+1}-1$ intervals of size 2^{j}

Subroutine classify

To classify y

If for each J in T near to y

violations^{*}(y, J) < .4 $|J|$

then y is Accepted else y is Rejected

Where are we?

For d=1 have a subroutine Classify

- \blacksquare On input x,
	- □ Classify outputs Accepted or Rejected
	- \Box Runs in time polylog(n)

WHP

- Accepted is f-monotone
- |Rejected| ≤ 10 d(f,P) |Γ|

Lift to higher d by recursion on dimension

Where are we? II

Now we need a fast function:

```
Accepted*(x):
```
returns a carefully chosen sample of Accepted elements $\leq x$

```
Must satisfy: 
for all x < y,
          Accepted<sup>*</sup>(x) < Accepted<sup>*</sup>(y)
```
Constructing Accepted*(x), $d=1$

Use the same test intervals.

- □ For each test interval J construct a polylog(n) size sample Sample*(J)
- □ First attempt: Take Accepted^{*}(x) to be: union of Sample*(J) for J near to and $\leq x$

But this may violate

 $Accepted[*](x) << Accepted[*](y)$

Constructing Accepted^{*}(x), $d=1$ II □ First attempt: Take Accepted^{*}(x) to be: union of Sample*(J) for J near to and $\leq x$

Bad Scenario: x < y

Avoiding the bad scenario, $d=1$

Focus on the test intervals

- \blacksquare For a given test interval J, there are only O(log n) test intervals J' that can cause the bad scenario.
- For each such J',

if the bad scenario happens then set $Sample[*](J)$ to be empty.

Key point in analysis: can still ensure that $g(x)=f(x)$ for "most" x.

Constructing Accepted*(x), d>1

Instead of $O(n)$ test intervals, have O(n^d) test boxes

Construct Sample*(B) for each box B.

Identify similar bad scenario, but…. ….. Setting Sample^{*}(B) to be empty is too drastic. Instead Sample*(B) is thinned out carefully

> This is the hardest part of the paper: technical (but not messy) algorithm and analysis

Further work

- **Technical (but still interesting) gap:** The g produced by our algorithm has $d(g,f) \leq C(d)\epsilon(f)|\Gamma|$
	- **Upper bound on C(d) is** $exp(d^2)$ **.**
	- \Box Lower bound on $C(d)$ exp(d)

Nain question:

Are there other interesting properties with non-trivial local filters?

(Reconstructing expanders, Kale,Peres, Seshadhri, FOCS 08)