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Overview

 Introduce a class of algorithmic problems:

Local  Property Reconstruction

Distributed Property Reconstruction

Parallel Property Reconstruction

extending framework of 

program self-correction, 

robust property testing 

locally decodable codes)

 An interesting example:  Monotonicity
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Data Sets

Data set = function f : Γ V

Γ = finite index set

V = value set

For us,

Γ = [n]d = {1,…,n}d

V = nonnegative integers

f = d-dimensional array of nonnegative integers
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Properties of data sets

Focus of this talk: 

 Monotone: nondecreasing along every line

(Order preserving)

When d=1,

monotone = sorted
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dist(f,g) = fraction of domain where f(x) ≠ g(x)

ε(f) = d(f,P)

= minimum of dist(f,g) for g satisfying P

Distance between two data sets
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Property Reconstruction

Setting: 

Given f

 We expect f to satisfy P

(e.g. we run algorithms on f that rely on P)

 but f might not satisfy P

but f is close to P -- ε(f) is small



Reconstruction problem for P

Given function f, 

produce reconstructed function g that:

 satisfies P

 is close to f:

Error blow-up     

d(f,g) / ε(f)

is not too large
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What does it mean to produce g?

 Offline property reconstruction

Input: function table for f

Output: function table for g

 Local property reconstruction

(which builds on

Online property reconstruction

(Ailon-Chazelle-Liu-Seshadhri))
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Local property reconstruction     1

What we want: A local filter

Algorithm A with query access to function f 

Input: domain element x

Output: g(x)  (reconstructed function value)

 A may query f(y) for any y

 uses short random string s 

-- otherwise deterministic.

Key points: 

 String s is the same for all queries.

 The reconstructed function g is fully determined by f and s
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Local Property Reconstruction II

Goals: 

 g has property P  (no error)

 d(g,f) =  O( ε(f) ) 

WHP over choices of random string s

 For each input x,  A(x) runs quickly

in particular only reads f(y) for a small number of y.



Local Property Reconstruction III

Motivation:

 Allows for online reconstruction with small 

auxiliary memory

 Allows for many autonomous clients to 

perform the same reconstruction
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Local Property Reconstruction III

Inspirations and Connections:
 Online Property Reconstruction (Ailon-Chazelle-Liu-Seshadhri)

 Locally Decodable Codes and Program self-correction (Blum-Luby-

Rubinfeld;  Rubinfeld-Sudan; etc )

 Graph Coloring (Goldreich-Goldwasser-Ron)

 Monotonicity Testing (Dodis-Goldreich- Lehman-Raskhodnikova-Ron-

Samorodnitsky; Goldreich-Goldwasser- Lehman-Ron-Samorodnitsky;Fischer;Fischer-

Lehman-Newman-Raskhodnikova-Rubinfeld-Samorodnitsky;Ergun-Kannan-Kumar-

Rubinfeld-Vishwanathan; etc)

 Tolerant Property Testing (Parnas, Ron, Rubinfeld)
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Example: Local Decoding of Codes 

f = boolean string of length n

Property = is a Code word of a 

given error correcting code C

Reconstruction = Decoding to a close code word

Local filter= Local decoder
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Key issue for general properties 
Answers must be mutually consistent

Say that h is satisfactory if it satisfies P and is close to f. 

 We want a satisfactory h

 There may be many satisfactory h

 If we look at a single  query point x, the algorithm may answer h(x)

for any satisfactory h 

(possibly many permissible answers)

 Global consistency requirement: 

For each random seed, the ensemble of query responses 

corresponds to a single satisfactory h.
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Our results I

A local filter for monotonicity in dimension d such that:

 Time to compute g(x) is (log n)O(d) as

 dist(f,g) = C1(d)d(f,P) (C1(d) = 2(O(d2)))

 Shared random string s has size (d log n)O(1)

(Builds on prior results on monotonicity testing and online 

reconstruction mentioned earlier)

Lower Bound.       For some B>0, 

For any local filter for monotonicity on domain  {0,1}d 

if query time is at most 2Bd  

then error blow up is at least 2Bd



Other Examples and an Invitation

Other examples of local property reconstruction:

Not many….

 Locally Decodable Codes

 Graph k-colorability (Implicit in Goldreich-Goldwasser-Ron)

 Being an expander (Kale, Peres, Seshadhri)

INVITATION

17



Remainder of Talk: 

Overview of our filter construction for 

monotonicity
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Preliminaries

A subset S of Γ is f-monotone

if f restricted to S is monotone.

For each x in Γ, A(x) must:

 Decide whether g(x) = f(x)

 If not , then determine g(x)

Accepted = { x : g(x) = f(x) }

Rejected =  { x : g(x) ≠ f(x) }

In particular, Accepted must be f-monotone
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Subproblem: Element Classification

 Classify each x in Γ as Accepted or Rejected

 Accepted is f – monotone

 Rejected is small: size size O(ε(f)|Γ|)

Need subroutine Classify(x).



Initial approach

 Construct a subroutine Classify as above

 Define g(x):

Accepted(x) = { y : y ≤x and y Accepted}

g(x) = max{f(y) : y in Accepted(x))}

 Then:

 g is monotone

 g agrees with f on  Accepted
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Initial approach II

Failure of initial approach

Accepted(x) = { y : y ≤x and y Accepted}

g(x) = max{f(y) : y in Accepted(x))}

Computing g(x) is expensive: 

it (apparently) requires 

identifying all maximal y in Accepted(x)
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Refined approach

Given function Classify

Define 

Accepted*(x) = a small carefully chosen 

sample of  Accepted(x)

g(x) = max{f(y) : y in Accepted*(x))}
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Refined Approach II

g(x) = max{f(y) : y in Accepted*(x))}

Resulting g need not be monotone

To ensure monotonicity

we need samples associated to each point to be compatible:

For all x < y,           Accepted*(x) << Accepted*(y)

(Each z in Accepted*(x) is less than some z’ in Accepted*(y))
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Refined Approach III

Summary: 

Two routines:

Classify(x)  which Accepts or Rejects

Accepted*(x)  gives  sample of Accepted elements ≤ x

so that   Accepted*(x) << Accepted*(y)

Return g(x) = max{f(y) : y in Accepted*(x))}
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Refined Approach IV.

On input x,

Return g(x) = max{f(y) : y in Accepted*(x))}

Challenges:

(1) For most x,  want x in Accepted*(x)

so as to guarantee g(x)=f(x)

(2) Need that sets Accepted*(x)  are pairwise compatible

Conflict between (1) and (2)
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Constructing Classify

 Classify each x in Γ as Accepted or Rejected

 Accepted is f – monotone

 Rejected is small: 

size O(d(f,P) |Γ|)
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A sufficient condition for f-monotonicity

A pair (x,y) in Γ × Γ is a violation if

x < y and f(x) > f(y)

To guarantee that Accepted is f - monotone:

Rejected should hit all violations:

For each violation (x,y),  x or y is Rejected
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Classify: 1-dimensional case

d=1:   Γ={1,…,n}

f is a linear array.

For x in Γ, and subinterval J of Γ:

violations(x,J)=|{y in J : (x,y) is a violation}|

Interval J is near x if dist(J,x)<|J|
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Constructing a large f-monotone set I

The set Bad: 

x in Bad if for some interval J near to x

x is in violation with at least half of J

Lemma.

1)Good=Γ - Bad is f-monotone

2)|Bad| ≤ 4 d(f,P) |Γ| . 

Proof: 

1) If (x,y) is a violation then one of them is Bad for the interval [x,y].

2) Omitted, but easy
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Constructing a large f-monotone set II

Lemma.

 Good=Γ \ Bad is f-monotone

 |Bad| ≤ 4 d(f,P) |Γ| . 

So we’d like to take:

Accepted=Good Rejected = Bad
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How do we classify x as Good or Bad?

 To determine is y is Good or Bad:

For each interval J that is near to y, 

is y is in violation with half of J?

Too slow…..

 There are (n) intervals J near to y

 Counting violations of x with J takes time 

(|J|) .
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Speeding up the computation

 Estimate number of violations of y with J by 

random sampling from J

sample size polylog(n) is sufficient

violations* (y,J) denotes the estimate

 Compute violations* (y,J) only for a 

carefully chosen set of test intervals
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Set of Test intervals

Want set T of  test intervals  of [n] satisfying:

 Each x is near to O(log n) test intervals

 For any x<y, there is a test interval contained in [x,y] that is near to 
both x and y.

which ensures that WHP, for every  violation x,y, at least one 
of them is rejected.
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The Test Set T

Assume n=|Γ|=2k

k layers of intervals

Layer j consists of 2k-j+1-1 intervals of size 2j
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Subroutine classify

To classify y

If for each J in T near to y

violations*(y,J) < .4 |J|

then y is Accepted

else y is Rejected
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Where are we?

For d=1 have a subroutine Classify

 On input x, 

 Classify outputs Accepted or Rejected

 Runs in time polylog(n)

 WHP

 Accepted is f-monotone

 |Rejected| ≤ 10 d(f,P) |Γ|

Lift to higher d by recursion on dimension



Where are we? II

Now we need a fast function:

Accepted*(x): 

returns a carefully chosen sample of  Accepted

elements ≤ x

Must satisfy: 

for all x < y,

Accepted*(x) << Accepted*(y)
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Constructing Accepted*(x), d=1

 Use the same  test intervals. 

 For each test interval J construct a polylog(n) size 

sample Sample*(J) 

 First attempt: Take Accepted*(x) to be:  

union of Sample*(J) for J 

near to and ≤ x

But this may violate

Accepted*(x) <<  Accepted*(y)
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Constructing Accepted*(x), d=1   II
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 First attempt: Take Accepted*(x) to be:  

union of Sample*(J) for J 

near to and     ≤ x

Bad Scenario:  x < y

x y

J

K x in Sample*(J)

but not Sample*(K)



Avoiding the bad scenario, d=1

Focus on the test intervals

 For a given test interval J, there are only 

O(log n)  test intervals J’

that can cause the bad scenario.  

 For each such J’, 

if the bad scenario happens

then set Sample*(J) to be empty.

 Key point in analysis: can still ensure that g(x)=f(x) for “most” x.
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Constructing Accepted*(x), d>1

Instead of  O(n) test intervals, 

have O(nd) test boxes

Construct Sample*(B) for each box B.

Identify similar bad scenario,  but….

….. Setting Sample*(B) to be empty is too drastic.

Instead Sample*(B) is thinned out carefully

This is the hardest part of the paper:

technical (but not messy)  algorithm and analysis
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Further work
 Technical  (but still interesting)  gap:

The g produced by our algorithm has

d(g,f) ≤ C(d)ε(f)|Γ|

 Upper bound on C(d) is exp(d2) .

 Lower bound on C(d)  exp(d)

 Main question: 

Are there other interesting properties with non-trivial local filters?

 (Reconstructing expanders, Kale,Peres, Seshadhri, FOCS 08)


